Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311951, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593355

RESUMO

Soft actuators have assumed vital roles in a diverse number of research and application fields, driving innovation and transformative advancements. Using 3D molding of smart materials and combining these materials through structural design strategies, a single soft actuator can achieve multiple functions. However, it is still challenging to realize soft actuators that possess high environmental adaptability while capable of different tasks. Here, the response threshold of a soft actuator is modulated by precisely tuning the ratio of stimulus-responsive groups in hydrogels. By combining a heterogeneous bilayer membrane structure and in situ multimaterial printing, the obtained soft actuator deformed in response to changes in the surrounding medium. The response medium is suitable for both biotic and abiotic environments, and the response rate is fast. By changing the surrounding medium, the precise capture, manipulation, and release of micron-sized particles of different diameters in 3D are realized. In addition, static capture of a single red blood cell is realized using biologically responsive medium changes. Finally, the experimental results are well predicted using finite element analysis. It is believed that with further optimization of the structure size and autonomous navigation platform, the proposed soft microactuator has significant potential to function as an easy-to-manipulate multifunctional robot.

2.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464176

RESUMO

Heparanase-1 (HPSE-1), an endo-ß-D-glucuronidase, is an extracellular matrix (ECM) remodeling enzyme that degrades heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs). HPSE-1 functions to remodel the ECM and thereby disseminate cells, liberate HS-bound bioactive molecules, and release biologically active HS fragments. Being the only known enzyme for the cleavage of HS, HPSE-1 regulates a number of fundamental cellular processes including cell migration, cytokine regulation, angiogenesis, and wound healing. Overexpression of HPSE-1 has been discovered in most cancers, inflammatory diseases, viral infections, among others. As an emerging therapeutic target, the biological role of HPSE-1 remains to be explored but is hampered by a lack of research tools. To expand the chemical tool-kit of fluorogenic probes to interrogate HPSE-1 activity, we design and synthesized a fluorogenic green disaccharide-based HPSE-1 probe using our design strategy of tuning the electronic effect of the aryl aglycon. The novel probe exhibits a highly sensitive 278-fold fluorescence turn-on response in the presence of recombinant human HPSE-1, while emitting green light at 560 nm, enabling the fluorescence imaging of HPSE-1 activity in cells.

3.
J Med Chem ; 67(7): 5924-5934, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38507820

RESUMO

Real-time detection of cellular senescence remains a clinical challenge. Here, we aimed to develop a positron emission tomography (PET) imaging probe targeting senescence-associated ß-galactosidase (SA-ß-Gal), the most widely used biomarker of cellular senescence, and investigate its performance for real-time in vivo quantitative detection of cellular senescence. A stable PET imaging agent [68Ga]Ga-BGal was obtained with a high labeling yield (90.0 ± 4.3%) and a radiochemical purity (>95%). [68Ga]Ga-BGal displayed high sensitivity and specificity for ß-Gal both in vitro and in vivo. The reaction and uptake of the probe correlated with the ß-Gal concentration and reaction time. In PET imaging, high ß-Gal-expressing CT26.CL25 tumors and doxorubicin-treated HeLa tumors showed high signals from [68Ga]Ga-BGal, while a low signal was observed in CT26.WT and untreated HeLa tumors. In summary, we showcased successful PET imaging of senescence in preclinical models using probe [68Ga]Ga-BGal. This finding holds the potential for translating senescence imaging into clinical applications.


Assuntos
Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Células HeLa , Doxorrubicina , Linhagem Celular Tumoral
4.
Sci Rep ; 14(1): 5179, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431737

RESUMO

This paper constructs a two-layer road data asset revenue allocation model based on a modified Shapley value approach. The first layer allocates revenue to three roles in the data value realization process: the original data collectors, the data processors, and the data product producers. It fully considers and appropriately adjusts the revenue allocation to each role based on data risk factors. The second layer determines the correction factors for different roles to distribute revenue among the participants within those roles. Finally, the revenue values of the participants within each role are synthesized to obtain a consolidated revenue distribution for each participant. Compared to the traditional Shapley value method, this model establishes a revenue allocation evaluation index system, uses entropy weighting and rough set theory to determine the weights, and adopts a fuzzy comprehensive evaluation and numerical analysis to assess the degree of contribution of participants. It fully accounts for differences in both the qualitative and quantitative contributions of participants, enabling a fairer and more reasonable distribution of revenues. This study provides new perspectives and methodologies for the benefit distribution mechanism in road data assets, which aid in promoting the market-based use of road data assets, and it serves as an important reference for the application of data assetization in the road transportation industry.

5.
Dalton Trans ; 53(7): 3348-3355, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38263862

RESUMO

Titanium dioxide (TiO2) anodes show significant advantages in ion storage owing to their low cost, abundant sources, and small volume change during cycling. However, their intrinsic low electronic conductivity and sluggish ion diffusion coefficient restrict the application of TiO2 anodes, especially at high current densities. The construction of a covalently-bonded interface in TiO2-based composite anodes is an effective approach to solve these issues. Covalent bonds are usually formed in situ during materials synthesis processes, such as high-energy ball milling, solvothermal reactions, plasma-assisted thermal treatment, and addition of a linking agent for covalent coupling. In this study, we demonstrate that a spontaneous redox reaction between defective TiO2 powder and an oxidative graphene oxide (GO) substate can be used to form interfacial covalent bonds in composites. Different structural characterization techniques confirmed the formation of interfacial covalent bonds. Electrochemical measurements on an optimized sample showed that a specific capacity of 281.3 mA h g-1 after 200 cycles can be achieved at a current density of 1 C (1 C = 168 mA g-1). Even at a high rate of 50 C, the electrode maintained a reversible capacity of 97.0 mA h g-1. The good lithium storage performance of the electrode is a result of the uniquely designed composite electrodes with strong interfacial chemical bonds.

6.
Adv Sci (Weinh) ; 11(6): e2305883, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38060841

RESUMO

Flexible pressure sensors based on micro-/nanostructures can be integrated into robots to achieve sensitive tactile perception. However, conventional symmetric structures, such as pyramids or hemispheres, can sense only the magnitude of a force and not its direction. In this study, a capacitive flexible tactile sensor inspired by skin structures and based on an asymmetric microhair structure array to perceive directional shear force is designed. Asymmetric microhair structures are obtained by two-photon polymerization (TPP) and replication. Owing to the features of asymmetric microhair structures, different shear force directions result in different deformations. The designed device can determine the directions of both static and dynamic shear forces. Additionally, it exhibits large response scales ranging from 30 Pa to 300 kPa and maintains high stability even after 5000 cycles; the final relative capacitive change (ΔC/C0 ) is <2.5%. This flexible tactile sensor has the potential to improve the perception and manipulation ability of dexterous hands and enhance the intelligence of robots.

7.
Sci Rep ; 13(1): 19261, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935739

RESUMO

Bi-directional pedestrian flow in corridors is a complex dynamic system due to the diversity in pedestrian psychological characteristics. Incorporating individual differences of pedestrians is vital for improving pedestrian flow models. However, due to the inherent complexity and variability of pedestrian movement, model parameter calibration remains challenging. Controlled experiments are needed to collect empirical pedestrian movement data under different environments. This enriches the database on pedestrian movement patterns and provides necessary support for improving pedestrian flow models. To address this issue, we conducted controlled experiments to quantify pedestrian heterogeneity by defining the direction of fuzzy visual field (DFVF). The DFVF incorporates various static and dynamic pedestrian factors. We used it to modify the traditional cellular automata model. This improved model simulates bi-directional pedestrian movements in the corridors, reproduces density-speed and density-volume relationships, and reveals self-organization phenomena. Furthermore, an analysis was conducted to examine the impacts of pedestrian density and facility spatial layout on evacuation time. Pedestrian interactions were also studied to uncover fundamental bi-directional flow properties. As pedestrian density increased, the evacuation time showed an exponential upward trend. Corridor length significantly impacts evacuation time, while increasing corridor width helps control it. As crowd density increases, pedestrian flows exhibit three distinct steady states: the strolling flow at low densities, directional separated flows at medium densities, and dynamic multi-lane flows at high densities. In summary, the modified cellular automata model successfully incorporates pedestrian heterogeneity and reveals intrinsic bi-directional pedestrian flow patterns. This study provides valuable insights for pedestrian facility design and optimizing pedestrian flow organization.

8.
J Colloid Interface Sci ; 650(Pt B): 1773-1785, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506418

RESUMO

Sonodynamic therapy (SDT) can generate reactive oxygen species to kill cancer cells by activating sonosensitizers under ultrasound (US) irradiation. Nevertheless, its application is greatly limited by low quantum yield of sonosensitizers, high levels of endogenous glutathione (GSH) and tumor hypoxia. Herein, a GSH-activated sonosensitizers with synergistic therapy effect (chemodynamic therapy (CDT) and SDT) are developed by depositing Fe(III)-artemisinin infinite coordination polymers (Fe(III)-ART CPs) in pores of mesoporous TiO2 nanoparticles (NPs). The formed Fe(III)-ART-TiO2 NPs have high sono-induced electron-hole separation efficiency because the deposited Fe(III)-ART CPs can provide isolated intermediate bands to capture sono-induced electrons in TiO2 NPs. Meanwhile, Fe3+ in Fe(III)-ART-TiO2 NPs are reduced to Fe2+ by GSH with oxygen-deficient sites generated to further capture sono-induced electrons in TiO2 NPs. Based on this, the reaction efficiency between water molecules and sono-induced holes is high enough to generate numerous hydroxyl radicals (•OH) without oxygen participated for overcoming tumor hypoxia. Additionally, through consuming GSH, the generated Fe2+ can catalyze ART to produce C-centered free radicals for CDT. Owing to these characteristics, Fe(III)-ART-TiO2 NPs show significant tumor suppression ability and good biocompatibility in vivo. The strategy of using CDT agent to modify sonosensitizers offers new options to improve SDT effect without introducing harmful substances.


Assuntos
Nanopartículas , Neoplasias , Humanos , Compostos Férricos , Hipóxia , Oxigênio , Glutationa , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
9.
Small ; 19(42): e2302656, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37345000

RESUMO

An active heterostructure with smart-response material used as "muscle" and inactive material as "skeleton" can deform over time to respond to external stimuli. 4D printing integrated with two-photon polymerization technology and smart material allows the material or characteristic distribution of active heterostructures to be defined directly at the microscale, providing a huge programmable space. However, the high degree of design freedom and the microscale pose a challenge to the construction of micromachines with customized shape morphing. Here, a reverse design strategy based on multi-material stepwise 4D printing is proposed to guide the structural design of biomimetic micromachines. Inspired by the piecewise constant curvature model of soft robot, a reverse design algorithm based on the Timoshenko model is developed. The algorithm can approximate 2D features to a constant-curvature model and determine an acceptable material distribution within the explored printing range. Three Chinese "Long" (Chinese dragon heralds of good fortune) designed by the strategy can deform to the customized shape. In addition, a microcrawler printed using this method can imitate a real inchworm gait. These results demonstrate that this method can be an efficient tool for the action or shape design of bionic soft microrobots or micromachines with predetermined functions.

10.
Bioorg Med Chem ; 90: 117335, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257254

RESUMO

Heparanase-1 (HPSE) is a promising yet challenging therapeutic target. It is the only known enzyme that is responsible for cleavage of heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs), and is the key enzyme involved in the remodeling and degradation of the extracellular matrix (ECM). Overexpression of HPSE is found in various types of diseases, including cancers, inflammations, diabetes, and viral infections. Inhibiting HPSE can restore ECM functions and integrity, making the development of HPSE inhibitors a highly sought-after topic. So far, all HPSE inhibitors that have entered clinical trials belong to the category of HS mimetics, and no small-molecule or drug-like HPSE inhibitors have made similar progress. None of the HS mimetics have been approved as drugs, with some clinical trials discontinued due to poor bioavailability, side effects, and unfavorable pharmacokinetics characteristics. Small-molecule HPSE inhibitors are, therefore, particularly appealing due to their drug-like characteristics. Advances in the chemical spaces and drug design technologies, including the increasing use of in vitro and in silico screening methods, have provided new opportunities in drug discovery. This article aims to review the discovery and development of small-molecule HPSE inhibitors via screening strategies to shed light on the future endeavors in the development of novel HPSE inhibitors.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Proteoglicanas de Heparan Sulfato/metabolismo , Proteoglicanas de Heparan Sulfato/uso terapêutico , Heparitina Sulfato/metabolismo , Heparitina Sulfato/uso terapêutico , Glucuronidase/metabolismo , Glucuronidase/uso terapêutico
11.
Pathogens ; 11(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558882

RESUMO

Sepsis-associated acute liver injury caused by spillovers of bacteria and endotoxins (lipopolysaccharide, LPS) into the liver remains a public health issue due to the lack of specific therapeutic approaches. Previous studies showed that the recombinant protein HscB (rCsHscB) of Clonorchis sinensis, a carcinogenic liver fluke, had an anti-inflammatory effect and could alleviate inflammatory diseases such as enteritis; however, whether it can prevent sepsis-associated acute liver injury induced by LPS is still unknown. In our current study, the therapeutic effects and the potential mechanisms of rCsHscB on LPS-induced acute liver injury were investigated both in vivo and in vitro. The data showed that rCsHscB prevented LPS-induced liver damage, as demonstrated by histopathological observation and hepatic damage markers (the activities of serum ALT and AST) in a murine model of sepsis-associated acute liver injury. rCsHscB also significantly reversed the high levels of serum IL-6 and MCP-1 induced by LPS. In addition, rCsHscB attenuated the production of LPS-induced proinflammatory cytokines, including IL-6 and TNF-α, in a macrophage cell line-RAW264.7, through possible mediation by the MAPK signaling pathway in vitro. In conclusion, the present study demonstrates that rCsHscB derived from a fluke C. sinensis protects against sepsis-associated acute liver injury induced by LPS, which may be attributed to the inhibition of the MAPK signaling pathway. Our present study provides a potential therapeutic strategy for sepsis-associated acute liver injury.

12.
Bioconjug Chem ; 33(12): 2290-2298, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346913

RESUMO

Heparanase (HPSE) is an endo-ß-glucuronidase involved in extracellular matrix remodeling in rapidly healing tissues, most cancers and inflammation, and viral infection. Its importance as a therapeutic target warrants further study, but such is hampered by a lack of research tools. To expand the toolkits for probing HPSE enzymatic activity, we report the design of a substrate scaffold for HPSE comprised of a disaccharide substrate appended with a linker, capable of carrying cargo until being cleaved by HPSE. Here exemplified as a fluorogenic, coumarin-based imaging probe, this scaffold can potentially expand the availability of HPSE-responsive imaging or drug delivery tools using a variety of imaging moieties or other cargo. We show that electronic tuning of the scaffold provides a robust response to HPSE while simplifying the structural requirements of the attached cargo. Molecular docking and modeling suggest a productive probe/HPSE binding mode. These results further support the hypothesis that the reactivity of these HPSE-responsive probes is predominantly influenced by the electron density of the aglycone. This universal HPSE-activatable scaffold will greatly facilitate future development of HPSE-responsive probes and drugs.


Assuntos
Matriz Extracelular , Glucuronidase , Preparações Farmacêuticas , Simulação de Acoplamento Molecular , Matriz Extracelular/metabolismo , Glucuronidase/metabolismo
13.
J Oncol ; 2022: 3156968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909901

RESUMO

Background: The treatment of cervical cancer in the late stage is still quite challenging, because of nonspecificity in conventional therapies and the lack of molecular targeted drugs. It is necessary to find novel biomarkers for cervical cancer treatment. Methods: In the present study, cervical cell lines HeLa and SiHa with kin17 knockdown were constructed by transfection of the recombinant lentiviral vector carrying KIN17 siRNA and screened by puromycin. The established cells with kin17 knockdown were determined by fluorescence observation and western blotting. Cell apoptosis and the mitochondrial membrane potential (MMP) were detected by flow cytometry. The activity of caspase 3 enzyme was tested by spectrophotometry. The expression profile of apoptosis-associated proteins was analyzed by western blotting. Finally, we used bioinformatics and proteomic data to analyze KIN-related genes in cervical cancer. Results: The results showed high fluorescent positive rates (>90%) and high gene silencing efficiency (>65%) in HeLa and SiHa cells transfected with gene silencing vectors. Moreover, kin17 deficiency decreased the MMP and increased the apoptosis rates in HeLa and SiHa cells, respectively. Furthermore, knockdown of kin17 enhanced the activity of caspase 3 enzyme, increased the expression of cleaved PARP and Bim, while decreasing the expression of Bcl-xL and phosphorylated BAD in HeLa and SiHa cells. Identification of KIN-related prognostic genes in cervical cancer revealed that a total of 5 genes (FZR1, IMPDH1, GPKOW, XPA, and DDX39A) were constructed for this risk score, and the results showed that CTLA4 expressions were negatively correlated with the risk score. Conclusion: Our findings demonstrated that kin17 knockdown facilitates apoptosis of cervical cancer cells by targeting caspase 3, PARP, and Bcl-2 family proteins. Besides, kin17 could regulate cancer cell apoptosis through the mitochondrial pathway and could be used as a novel therapeutic target for the regulation of cell apoptosis in cervical cancer.

14.
Lab Chip ; 22(19): 3687-3698, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35903981

RESUMO

Optogenetically engineered cell population obtained by heterogeneous gene expression plays a vital role in life science, medicine, and biohybrid robotics, and purification and characterization are essential to enhance its application performance. However, the existing cell purification methods suffer from complex sample preparation or inevitable damage and pollution. The efficient and nondestructive label-free purification and characterization of the optogenetically engineered cells, HEK293-ChR2 cells, is provided here using an optically-induced dielectrophoresis (ODEP)-based approach. The distinctive crossover frequencies of the engineered cells and the unmodified cells enable effective separation due to the opposite DEP forces on them. The ODEP-based approach can greatly improve the purity of the separated cell population and especially, the ratio of the engineered cells in the separated cell population can be enhanced by 275% at a low transfection rate. The size and the membrane capacitance of the separated cell population decreases and increases, respectively, as the ratio of the engineered cells grows in the cell population, indicating that successful expression of ChR2 in a single HEK293 cell makes its size and membrane capacitance smaller and larger, respectively. The results of biohybrid imaging with the optogenetically engineered cells demonstrated that cell purification can improve the imaging quality. This work proves that the separation and purification of engineered cells are of great significance for their application in practice.


Assuntos
Eletroforese , Separação Celular/métodos , Capacitância Elétrica , Eletroforese/métodos , Células HEK293 , Humanos
15.
Genes (Basel) ; 13(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456506

RESUMO

In high-throughput profiling studies, extensive efforts have been devoted to searching for the biomarkers associated with the development and progression of complex diseases. The heterogeneity of covariate effects associated with the outcomes across subjects has been noted in the literature. In this paper, we consider a scenario where the effects of covariates change smoothly across subjects, which are ordered by a known auxiliary variable. To this end, we develop a penalization-based approach, which applies a penalization technique to simultaneously select important covariates and estimate their unique effects on the outcome variables of each subject. We demonstrate that, under the appropriate conditions, our method shows selection and estimation consistency. Additional simulations demonstrate its superiority compared to several competing methods. Furthermore, applying the proposed approach to two The Cancer Genome Atlas datasets leads to better prediction performance and higher selection stability.


Assuntos
Genômica , Neoplasias , Simulação por Computador , Genômica/métodos , Humanos , Neoplasias/genética
16.
Eur J Drug Metab Pharmacokinet ; 47(3): 403-417, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35171461

RESUMO

BACKGROUNDS AND OBJECTIVES: In silico methods which can generate high-quality physiologically based pharmacokinetic (PBPK) models for arbitrary drug candidates are greatly needed to select developable drug candidates that escape drug attrition because of the poor pharmacokinetic profile. The purpose of this study is to develop a novel protocol to preliminarily predict the concentration profile of a target drug based on the PBPK model of a structurally similar template drug by combining two software platforms for PBPK modeling, the SimCYP simulator and ADMET Predictor. METHODS: The method was evaluated by utilizing 13 drug pairs from 18 drugs in the built-in database of the SimCYP software. All drug pairs have Tanimoto scores (TS) no less than 0.5. As each drug in a drug pair can serve as both target and template, 26 sets were studied in this work. Three versions (V1, V2 and V3) of models for the target drug were constructed by replacing the corresponding parameters of the template drug step by step with those predicted by ADMET Predictor for the target drug. V1 represents the replacement of molecular weight (MW), V2 includes the replacement of parameter MW, fraction unbound in plasma (fu), blood-to-plasma partition ratio (B/P), logarithm of the octanol-buffer partition coefficient (log Po:w) and acid dissociation constant (pKa). In V3, all above-mentioned parameters as well as human jejunum effective permeability (Peff), Vd and cytochrome P450 (CYP) metabolism parameters (Km, Vmax or CLint) are modified. Normalized root mean square error (NRMSE) was used for the evaluation of the model performance. RESULTS: We found that the performance of the three versions of the models depends on structural similarity of the drug pairs. For Group I drug pairs (TS ≤ 0.7), V2 and V3 performed better than V1 in terms of NRMSE; for Group II drug pairs (0.7 < TS ≤ 0.9), 8 out of 10 V3 models had NRMSE < 0.2, the cutoff we applied to judge whether the simulated concentration-time (C-T) curve was satisfactory or not. V3 outperformed the V1 and V2 versions. For the two drug pairs belonging to Group III (TS > 0.9), V2 outperformed V1 and V3, suggesting more unnecessary replacement can lower the performance of PBPK models. We also investigated how the prediction accuracy of ADMET Predictor as well as its collaboration with SimCYP influences the quality of PBPK models constructed using SimCYP. CONCLUSION: In conclusion, we generated practical guidance on applying two mainstream software packages, ADMET Predictor and SimCYP, to construct PBPK models for drugs or drug candidates that lack ADME parameters in model construction.


Assuntos
Modelos Biológicos , Software , Simulação por Computador , Sistema Enzimático do Citocromo P-450 , Bases de Dados Factuais , Humanos , Permeabilidade
17.
Lab Chip ; 22(4): 727-732, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35024706

RESUMO

Hydrogels can provide a three-dimensional microenvironment for cells and thus serve as an extracellular matrix in a biofabrication process. The properties of hydrogels, such as their porosity and mechanical properties, significantly influence the cell growth. However, there is still a lack of effective methods for characterizing the hydrogel structure noninvasively. Herein, a photoacoustic (PA) imaging-based method is proposed for the characterization of gelatin methacrylate (GelMA) hydrogels. Owing to their high PA contrast, red blood cells (RBCs) are included as mediators in the GelMA hydrogel to analyze its pore distribution. The interconnectivity of the pores is further analyzed through the lysis of RBCs. The diffusion of the RBC lysis buffer in the GelMA is consistent with the trend observed in simulations. The analyzed vitality of HEK293 cells in different GelMA hydrogels reveals that understanding the diffusion of solutes (i.e., nutrients) is a potential strategy to optimize the hydrogel parameters during biofabrication.


Assuntos
Gelatina , Técnicas Fotoacústicas , Gelatina/química , Células HEK293 , Humanos , Hidrogéis/química , Metacrilatos/química , Engenharia Tecidual/métodos
18.
Parasit Vectors ; 14(1): 472, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521449

RESUMO

BACKGROUND: Various stimuli, including Clonorchis sinensis infection, can cause liver fibrosis. Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs) with massive production of extracellular matrix (ECM). Our previous study showed that the TGF-ß1-induced Smad signaling pathway played a critical role in the activation of HSCs during liver fibrosis induced by worm infection; however, the mechanisms that modulate the TGF-ß/Smad signaling pathway are still poorly understood. Accumulating evidence demonstrates that miRNAs act as an important regulator of activation of HSCs during liver fibrosis. METHODS: The target of miR-497 was determined by bioinformatics analysis combined with a dual-luciferase activity assay. LX-2 cells were transfected with miR-497 inhibitor and then stimulated with TGF-ß1 or excretory/secretory products of C. sinensis (CsESPs), and activation of LX-2 was assessed using qPCR or western blot. In vivo, the mice treated with CCl4 were intravenously injected with a single dose of adeno-associated virus serotype 8 (AAV8) that overexpressed anti-miR-497 sequences or their scramble control for 6 weeks. Liver fibrosis and damage were assessed by hematoxylin and eosin (H&E) staining, Masson staining, and qPCR; the activation of the TGF-ß/Smad signaling pathway was detected by qPCR or western blot. RESULTS: In the present study, the expression of miR-497 was increased in HSCs activated by TGF-ß1 or ESPs of C. sinensis. We identified that Smad7 was the target of miR-497 using combined bioinformatics analysis with luciferase activity assays. Transfection of anti-miR-497 into HSCs upregulated the expression of Smad7, leading to a decrease in the level of p-Smad2/3 and subsequent suppression of the activation of HSCs induced by TGF-ß1 or CsESPs. Furthermore, miR-497 inhibitor delivered by highly-hepatotropic (rAAV8) inhibited TGF-ß/smads signaling pathway by targeting at Smad7 to ameliorate CCL4-induced liver fibrosis. CONCLUSIONS: The present study demonstrates that miR-497 promotes liver fibrogenesis by targeting Smad7 to promote TGF-ß/Smad signaling pathway transduction both in vivo and in vitro, which provides a promising therapeutic strategy using anti-miR-497 against liver fibrosis.


Assuntos
Clonorquíase/parasitologia , Clonorchis sinensis/fisiologia , Cirrose Hepática/parasitologia , MicroRNAs/genética , Transdução de Sinais , Animais , Células Estreladas do Fígado , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
19.
Clin Cosmet Investig Dermatol ; 14: 541-546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045878

RESUMO

OBJECTIVE: To discuss a rapid and effective treatment used for children with eyelid lacerations during the COVID-19 lockdown in Wuhan to limit the risk of cross-infection. METHODS: A comparative study was conducted of forty-five patients with eyelid lacerations who attended the Ophthalmology Department of Wuhan Children's Hospital between January 23, 2020 and March 6, 2020. The tissue glue Histoacryl was used to bond the wounds in 24 cases, while the traditional suture method was used for 21 cases. The wound healing time, complications, treatment satisfaction, and number of visits of the two groups were compared. RESULTS: The two groups had similar baseline characteristics. The wound healing time (from wound disinfection to wound dressing) was shorter in the tissue glue group (4.35 ± 0.47min versus 11.71 ± 1.85 min, P< 0.01). There was 1 case of wound dehiscence in the tissue glue group. Twenty-two cases in the tissue glue group were satisfied, 2 cases were basically satisfied, and 0 were dissatisfied. Eleven cases in the traditional suture group were satisfied, 9 cases were basically satisfied, and 1 case was dissatisfied. The difference was statistically significant (P < 0.05). In terms of the number of visits, the tissue glue group visited (1.54 ± 0.88) times, while the traditional suture group visited (2.38 ± 0.59) times. The difference between the two groups was statistically significant (P < 0.01). The real-time reverse transcriptase polymerase chain tests for severe acute respiratory syndrome coronavirus 2 of all medical staff in the ophthalmology emergency room were negative. CONCLUSION: Compared with the traditional suture method, tissue glue used in eyelid laceration in children has the advantages of painlessness, shorter operation duration, higher safety and satisfaction, greater ease of care, and fewer hospital visits. Tissue glue can be widely used to reduce the risk of cross-infection.

20.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34013346

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a novel coronavirus, has brought an unprecedented pandemic to the world and affected over 64 million people. The virus infects human using its spike glycoprotein mediated by a crucial area, receptor-binding domain (RBD), to bind to the human ACE2 (hACE2) receptor. Mutations on RBD have been observed in different countries and classified into nine types: A435S, D364Y, G476S, N354D/D364Y, R408I, V341I, V367F, V483A and W436R. Employing molecular dynamics (MD) simulation, we investigated dynamics and structures of the complexes of the prototype and mutant types of SARS-CoV-2 spike RBDs and hACE2. We then probed binding free energies of the prototype and mutant types of RBD with hACE2 protein by using an end-point molecular mechanics Poisson Boltzmann surface area (MM-PBSA) method. According to the result of MM-PBSA binding free energy calculations, we found that V367F and N354D/D364Y mutant types showed enhanced binding affinities with hACE2 compared to the prototype. Our computational protocols were validated by the successful prediction of relative binding free energies between prototype and three mutants: N354D/D364Y, V367F and W436R. Thus, this study provides a reliable computational protocol to fast assess the existing and emerging RBD mutations. More importantly, the binding hotspots identified by using the molecular mechanics generalized Born surface area (MM-GBSA) free energy decomposition approach can guide the rational design of small molecule drugs or vaccines free of drug resistance, to interfere with or eradicate spike-hACE2 binding.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , COVID-19/patologia , COVID-19/virologia , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica/genética , SARS-CoV-2/química , SARS-CoV-2/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...